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1 Linear models of regression

A linear model of regression is a supervised learning method. Given a set of
data, the goal is to find a regression function, that best fits the data points
and enables us to make predictions for possible new points. This regression
function will meet a certain amount of criteria, that will make it a linear
function. Considering linear functions is convenient because of their
strightforward (mathematical) interpetation and resulting ease to estimate
new values.

1.1 What is regression analysis?

In general, regression analysis is a mathematical method used in order to
predict the value of one or more continuous target variables ¢, given a
N-dimensional vector x of input variables. Also it helps us to estimate the
causal relationship between theese variables, meaning what impact a
variable has on an other. This becomes especially important when looking
at multivariable linear regression methods. In comparison to some other
supervised learning methods, regression has a numerical output, rather
than allocating input values to a specific category.

1.2 Linear regression

Throughout this paper, we will consider a training data set comprising N
observations {z,} and corresponding target values {¢,}, n € {1,..., N}. We
will denote x = (z1,...,zx)7 and t = (¢4, ..., tn)T.

When talking about linear regression, the majority of people imagine a
straight line embedded in a plane. This presumption highly restricts the
possibilties for linear regression one could take into account. Rather than
looking at a function

y(x, W) = wo + w1 + - + wyTy (1)

we wan't to study functions satisfying

M-1

y(x,w) = wp + Z w;iP;(x). (2)



Please note, that this second function (2) has M summands, whereas (1)
has N.

When reagrding both of theese functions, we can see that indeed (1) is a
linear function in z, whereas (2) possibly is not. But we can also agree on
the fact, that both of theese functions are linear in w. We call the

{w;},7 € {0,..., M — 1} weights and we denote w = (wy, ..., wpr_1)".

The {¢;} are called basisfunctions (i =0, ..., M — 1).

1.2.1 Basisfunctions

Basisfunctions allow a much more broad approach to linear regression.
They permit the regression function y(x, w) not the be linear function in x
and thereby extend the range of functions one can use to fit the given data.
The choice of basisfunction has a large impact on the complexity and
flexibility of the final regression function. There are hardly any restrictions
for the selection of a basisfunction. Common examples are polynomial
functions, the ‘Gaussian basisfunction’ or so called wavelets. The regression
function will then be a linear combination of the chosen basisfunctions.
Later, when duscussing the bias-variance trade-off we will get a closer look
und how to choose the right basisfunction.

To facilitate things, we want to adjust the formula from (2) a little bit by
adding a “dummy function” ¢o(x) = 1 in order to obtain

y(x, w) = ijgbj(x) = wl¢(x). (3)

Let’s briefly get back to the number of summands in (2). Assuming that
{z,} € R forn=1,..., N, we can determine:

¢ :RY - RM, 21— ¢(x)

So ¢ takes in the entire vector x and maps it into a M-dimensional space.
By identifying z := ¢(x) we receive the function

y(z,w) = w'z,

which is a linear function in z as well as in w. Keep this in mind for later
on. We will use this notation to keep things a little less cluttered.
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1.2.2 Noise

The problem with all regression models is, that we make certain
assumptions about our data. First and foremost we consider our data to be
true. Well, in reality our collected data are corrupted with noise. Visually
this means, even if a have a fitting regression function y(x, w), the data
points will most likely stray from this function. Mathematically this means:

t=y(x,w) +e,

Where € is referred to as the noise.

This uncertainty about possible target values can be described using a
conditional probability distribution p(t|x). The most often used function to
describe this probability is the Gaussian distribution N, ,2 where the mean
is 1 = y(x, w) and the variance o2 is a fixed number. The probability
densitty function for the Gaussian distribution is given by

flw) = e 55 (4)

In the following use the coditional probability p(t[x) = Nyx w02
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1.2.3 Lossfunction

Let’s proceed on the premise that y(x, w) describes the regression function
we are looking for. Our ultimate goal is to find a function, that best fits our
data points. Therefore we want to minimize the difference between our
actual target values t and the target vlaues ¢ our function predicts. We do
this utilizing a so called loss function, alternatively called error function.
One commomly used loss function is the squared loss function. It is given
by

L(t,y(x)) = (y(x) — )"
Its expected loss or average is
E(L) = //(y(x) —1)? p(x,t) dx dt.

The minimum of this function is obtained by calculating the derivative and
its corresponding zero:

SE(L) o
Sy(x) 2/(9( ) —t) p(x, ) dt =0

[tp(x,t) dt o

v = p(x) _/WM)ﬁ—Mﬂ%



This implies, that the loss function is at its minimum, when y(x) = E(¢|x).
We know about the Gaussian distribution N, 52, that its average is .
Assuming p(t|x) has Gaussian distribution with u = y(x, w) as noted
above, we receive

E(t|x) = y(x, w).

As a result the regression function we are looking for simply is y(x, w).

1.2.4 Maximum-Likelihood Estimation (MLE)

We figured the regression function fitting our data will be given by

y(x,w) = wl¢(x) with priorly chosen basisfunctions ¢;, i € {0, ..., M — 1}.
But we still do not know what the weights {w;},j € {0, ..., M — 1} will look
like. We will calculate them using maximum-likelihood estimation.
Maximum-Likelihood estimation (MLE) is a mathematical procedure to
estimate a certain parameter of a given probability distribution. This is
done by calculating a likelihood-function, which describes the probablity an
event, that has this distribution, occurs depending on the choice of
parameter of the distribution. This function then will be maximized to
ensure the highest probability for the regarded event.

Our “event” of interest is the target variable t and the parameter we want
to adjust is w. So what we want to do is to find such w that increases the
probability for our observed data. Therefore we will once again look at the
conditional distribution of t. The resulting likelihood-function is

N
p(t|X,W) = H (t |y Tn, W HN y(Tn,w 02 HNWT¢(33n 02( )
n=1

Our goal will be to maximize this function. Often one looks at the
logarithm of the likelihood functions because it is more simple to work
with. It suffices to maximise the logarithm beacause the result is the same
as when maximizing the original function. Here the logarithm of the
likelihood function is given by

N
In(p(t|x, w) HNW ooz H

¢~ mz(tn—wTo(en))?)

V2ro?
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We now want to maximize this function with respect to w. This means,
that we want to minimize the term

= N In(

N
D (tn —wb(xn))". (5)
n=1

From linear algebra, we know the equality > .1 a? = a’a where a is a

n-dimensional vector. By applying this to (5) we obtain
(t — ®dw)' (t — Pw)
where @ is the so called desgin matrix comprising the rows ¢(z,)? given by
do(x1)  O1(w1) - du-a(z1)
¢ = : : E :
do(rn) d1(zn) - dm—1(wn)
As mentioned, we want to minimize M(w) := (t — ®w)(t — dw). With
some linear algebra we obtain the gradient Vy,M = —®Tt + &7 dw. By
calculation the zero of VM we receive
WNMLE — (‘I)T‘I))_l @Tt
This leaves us with

y(x,w) = WJ\T/[LEX'

1.2.5 Regularized least squares

A frequent problem in regression analysis is over-fitting. Also the
lossfunctions tends to get more complex than we need it to be, resulting in
the need for high computational power. We can regularize the loss function
by adding a regularization term. This term will drive weight values towards
zero when they are not important for the model. One example for a
regularization term is aEw (w) = $w”w. By adding this term to our
squared loss function we obtain F(w) = %Z;V:l(tn —wlp(x,))? + Swlw.
And our weights will be given by

WMLE = (@T@ + OéI)il (I’Tt.
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1.2.6 Bias-Variance trade-off

As mentioned before, the choice of basisfunction highly impacts the
complexity of our regression function and can easily lead to over-fitting.
Regularizing the loss function helps prevent over-fitting, but it is not clear
how to choose the regularization coefficient &«. We will not go into detail on
how to choose the correct basisfunction or a suitable a. Nonetheless we will
take a short look on how the complexity of our regression function impacts
the overall expected loss.

The expected loss is calculated with three different types of error: error due
to noise, error due to bias and error due to variance. The error resulting
from noise is irreducible, there just is inherent randomnes is our collected
data. The error due to bias describes the difference between our regression
function and our collected data. Choosing a less complex function might
result in not matching a lot of data points and therefore a high bias. Error
caused by variance describes the amout by which the predicted function
will change if we change training data. If we choose a very complex
function, the variance will be very high. In order to find a good balance,
one consideres the function adding the loss due to variance and the loss due
to bias and searches for this function’s minimum.
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1.3 Applications of linear regression

Linear regression is broadly used in machine learning. Most often it is
utilized for predictions and forecasting, but one could also use it in order to
analyze the impact a certain variable has on an other. There are many
fields that make use of regression algorithms, for example in business, in
medicine or in environmental models. Business prediction models include
predicting future prices/costs (e.g. material prices or labor costs) or on the
other hand expected revenues in dependency of for example advertising.
When it comes to comparison of different marketing strategies or product
lines, linear regression mind also find an useful application. In medicine one
could investigate the effect the consumption of certain drugs have on the
human body and maybe even whether a combination of different drugs
could be more effective or not. Imagine you are in agriculture and you want
your cow to produce as much milk as possible. In that case you could also
use a linear regression model, considering different factors as for example
the amount and quality of food you give your cow, the size of your cow
herd, how much space your cow has or the greenness of the grass it walks
on. Governments could also use regression to analyze domestic immigration
related to income, crime rates and education. Even in environmental
studies, linear regression finds application as researcher use it in air
pollution models (average fine particle and nitrogen dioxide concentration).
So as you can see there are many areas in which regression analysis,
especially linear regression is used. But why is this such a popular model?
Linear regression is a pretty simple model, so it is easily implemented. It is
straightforward in its interpretation, and the results are comprehensible.
Linear regression can be used with a wide variety of data, it is not really
specified, so it can be retrained depending on the data you put in.
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